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Abstract. To capture and analyze applications’ memory behaviors with low 
overhead plays a vital role in managing and scheduling memory resources on 
modern computer systems. In this paper, we re-design SysMon based on [13, 
14], which is an OS-level memory behaviors monitoring module in existing OS, 
and modify its several core components to meet the challenges of higher effi-
ciency and accuracy. SysMon can be used without offline profiling, instrumen-
tation or configuring complex parameters. We evaluate SysMon by making a 
great deal of experiments on SPECCPU 2006 [7], Memcached [1] and Redis 
[6]. The experimental results show that, by using SysMon, we can efficiently 
capture the memory footprint, write/read operations, hot/cold features, re-use 
time, bank hotness/bank balance, etc. Besides, we collect the memory access 
behaviors in the configuration of different sampling intervals, and draw a con-
clusion that using a 3 seconds interval can obtain information accurately with 
low overhead. Finally, to reduce the scanning overhead during samplings, Sys-
Mon adopts a randomization method, and scans only a portion of pages. Exper-
iments show that the sampling overhead can be reduced by 44.42% on average 
while guaranteeing the accuracy of sampling. 

Keywords: memory behaviors, system monitor tool, random sampling, sam-
pling interval. 

1 INTRODUCTION 

Allocating, managing and scheduling of memory resources have always been a major 
and very challenging subject on modern computer systems. With the emerging of big 
data and cloud computing, fast-growing memory footprint and energy consumption, 
high demand for Quality of Service (QoS) and throughput, etc. have brought new 
challenges to memory management [20-23, 25]. Especially, it may result in the 
severer memory access conflict with high probability when multiple applications are 
running in parallel. Many previous studies [8, 9, 13, 16, 19, 26, 27] show that it is 
important for operating systems to efficiently manage data with low overhead. In 
order to achieve this goal, there are many factors need to be considered to manage 
memory system efficiently, such as the different characteristics of data (e.g., 
write/read operations, hot/cold features), memory access hotness, re-use time, etc. 
Thus, an effective memory management policy is expected to accurately detect the 
applications' memory behaviors and schedule memory resources accordingly.  
    The existing program analysis tools like Intel's dynamic binary instrumentation 
framework Pin [5] can be used to create Pintools to perform program analysis on user 
space applications on Linux, Windows and OS X*. However, instrumentation con-
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sumes system resources, and thus increases the profiling overhead when analyzing the 
applications' behaviors. Another tool, Oprofile [2], is a performance counter monitor 
tool that monitors the running applications based on Performance Monitoring Unit 
(PMU). However, Oprofile and other performance counter monitor tools like PAPI 
[3] and perfmon2 [4] require underlying hardware support (i.e., PMU). And many of 
them cannot fully support the newer architectures because of the diversification of the 
hardware architecture. 

Compared with above approaches, SysMon [13, 14] is an efficient and lightweight 
application access behaviors monitor tool, which is a module that integrated into the 
kernel. It can be used on any version of Linux kernel without instrumentation, config-
uring complex parameters, or extra underlying hardware support. SysMon has good 
compatibility, stability, and scalability. However, in practice, some studies further 
show that the overhead brought by SysMon is heavy for some applications with much 
higher memory footprint and the sampling interval is hard to be determined to balance 
the overhead and accuracy in many real cases. To address these concerns, we re-
design SysMon and make the following contributions in this paper: 

� We optimize SysMon's sample method by adopting random sampling rather 
than traversing the page table to sample each page. The experimental results 
show that the sampling overhead can reduce 44.42% on average while ensur-
ing the sample effect.  

� We collect the memory access information under the configuration of differ-
ent sampling intervals. By analyzing the information, we draw a conclusion 
that using a 3 seconds interval can obtain information accurately with low 
overhead. 

� By using SysMon, we study a large number of workloads, and analyze their 
characteristics, including SPECCPU2006 [7], Memcached [1] and Redis [6]. 

We open sourced SysMon. The full code of SysMon is available at:  
https://github.com/Sys-Inventor-Research-Group-ICT/Sysmon 

2 BACKGROUND 

2.1 __access_bit  and __dirty_bit 

Starting from Linux v2.6.11, 64-bit Operating System (OS) adopts the organizational 
form of the four-layer page table, which is represented in Figure 1. Each item in Page 
Global Directory (PGD) points to a Page Upper Directory (PUD), and each entry in 
PUD points to a Page Middle Directory (PMD), and then, each item in PMD points to 
a PTE.  

The __access_bit in page table entry (PTE) can be used to indicate whether the 
page is accessed [11, 18]. 0 represents the page has not been accessed; while 1 means 
accessed (we define these pages as hot pages in this paper). And for the __dirty_bit, it 
can represent whether the page is modified. Similar to the __access_bit, when the 
__dirty_bit is equal to 0, it means there is no write operation happened to that page.  
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Fig. 1. Four-layer page table under 64-bit operating system. 

2.2 Address mapping 

Prior research [28] shows that mainstream computer systems’ address mapping can be 
detected by the software method. For example, as shown in Figure 2, bank bits are 
divided into two parts. Part I is independent, and part II is overlapped with cache bits. 
Figure 2 (a) presents Intel i7-860 processor that equips with a 16-way set associative 
8MB last level cache (LLC) and 8GB DDR3 main memory system, and it’s bank bits 
are 13-15, 21 and 22 bits; In Figure 2 (b), Intel Xeon 5600 processor, with 16-way set 
associative 12MB LLC and 32GB DDR3 main memory, whose bank bits are 13, 14, 
20 and 21 bits. For the configuration (a), 5 bank bits can index 2" = 32 banks ranging 
from bank 0 to bank 31. 

3 DESIGN AND IMPLEMENTATION 

3.1 Overview 

SysMon captures application behaviors dynamically such as memory footprint, page 
access frequency, re-use time of pages, memory utilization, etc. The information is 
collected online without offline profiling and does not need hardware performance 
counters. 

The design of SysMon is based on the three following principles: 
Principle 1: Compatibility. SysMon is integrated in the Linux kernel as a kernel 

module to monitor page-level application activities. It is reliable, portable and suitable 

 
Fig. 2. Address mapping. 
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Fig. 3. SysMon-based online page classification algorithm. 

for any version of Linux kernel. 
Principle 2: Low overhead. SysMon is a lightweight online tool that monitors ap-

plications in the real time. The overhead is mainly caused by scanning application’s 
page table. Through the random scanning optimization method, which is introduced in 
detail at Chapter 5, SysMon greatly reduces the scanning overhead by 44.42% on 
average.  

Principle 3: Efficiency. It is important for a monitoring tool that does not slow the 
responses to the applications’ access requests. Our experiments show that 100µs is 
enough to collect sufficient information while incurring a negligible delay. 

Except for monitoring the single application, SysMon can also monitor multiple 
applications that are executed in parallel. By analyzing the information captured by 
SysMon, we can make an accurate prediction of a running workload’s memory char-
acteristics, and use an appropriate memory management policy. 

As shown in Figure 3, we take a page classification algorithm as an example to in-
troduce the modules of SysMon. The information in the dashed box is collected by 
SysMon, and acc_num records the page’s total number of accesses in a given period, 
read/write times are being used to indicate the number of read/write operations on the 
pages during samplings. Re-use time is a variable to represent the page’s temporal 
locality. Based on the information in the dashed box in Figure 3, we classify the pages 
into three categories: write page, read page and cold page. In our experiments, THR1 
is 20 and THR2 is 10. The detailed information about pages’ characteristics can guide 
the data placement and data movement among the DRAM Banks to improve the over-
all performance. 

In the next section, we will introduce the modules of SysMon one by one. 

3.2 Module 1: Collecting page access frequency 

In the current version, the time interval between two sampling periods is 3 seconds in 
our system. To reduce the error efficiently, 200 samplings are executed in one sam-
pling period (i.e., 3s), but note that the time cost of 200 samplings is far less than 3s 
(100 ns in most cases). Each sampling contains two loops. Firstly, SysMon clears 
pages’ __access_bit by the pte_mkold() kernel function; and secondly, SysMon 
checks the pages’ __access_bit in the second loop. If the __access_bit is still 0, it 
means the page has not been accessed in this sampling; otherwise, this page has been 
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accessed during this sampling. 
 To locate the PTE and check the __access_bit of each page during the samplings, 
SysMon needs to lookup virtual address layer by layer (see Figure 1). In consideration 
of the fact that all pages targeted by a request are virtually contiguous, most of their 
PTEs are adjacent. It means that SysMon only needs to obtain the first page’s PTE 
from the page table root; for each of the remaining pages, we can get their PTEs by 
adding a fixed offset without starting from PGD [12]. Traversing like this can reduce 
the sampling overhead.  

For the running applications, Algorithm_1 shows the pseudo-code for obtaining the 
page access frequency. In the first loop, SysMon clears all pages’ __access_bit (Line 
2); and then, check the __access_bit using function pte_young() (Line 6).  

After 200 samplings, SysMon will calculate the total number of accesses of each 
page, and grade pages according to the page “heat” (i.e., the number of accesses). 
Classification standard in our experiments is shown in Table 1. It can be adjusted 
according to the characteristics of workloads. In addition, SysMon can calculate the 
memory footprint of the running workload. 

3.3 Module 2: Write/read operations statistics 

SysMon  dynamically  monitors  the  write/read  operations of hot pages during samp- 

Table 1. Classification standard for page “heat”. 
The number of accesses Page “Heat” The number of accesses Page “Heat” 

Larger than 200 Very High 64 ~ 100 Low 
150 ~ 200 High 10 ~ 64 Lower 
100 ~ 150 Medium Less than 10 Very low 
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Fig. 4. Re-use time of one page. 

lings. In the page classification process (see Figure 3), we give write operations a 
heavier weight as write operations are more expensive than read operations in 
memory system (i.e., empirical value is 2 since write operations need to read data, 
modify and write back to the memory, causing a longer latency than read operations 
[29]). And this value can be adjusted according to the specific environments and con-
figurations.   

Algorithm_1 shows how to calculate the write/read times of each page. SysMon 
clear the __access_bit and __dirty_bit in the first loop (Line 2); and in the second 
loop, if pte_dirty() returns 1, it means write operation occurs. Otherwise, a read opera-
tion is detected (Line 8-Line 12). Moreover, SysMon can also record that, compared 
with the last sampling, the number of write pages converting into read pages and the 
number of read pages converting into write pages. It is meaningful for the data place-
ment that distinguishes the page is a write domain page or a read domain page. 

3.4 Module 3: Re-use time statistics 

In order to calculate re-use time of a page, SysMon monitors whether this page is 
accessed in each sampling, and uses an array to record the interval between the two 
accesses, this is so-called “re-use time” of that page. Figure 4 denotes the re-use time 
of the selected page, where iterations means the samplings, and access times records 
the picked page’s access times. Algorithm_2 describes how to calculate the re-use 
time of a page. SysMon checks the __access_bit, if the page is accessed, the number 
of accesses times adds 1; if not, the re-use “distance” between last access and next 
access increases 1 (Line 6-Line 10). 
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The pages to be monitored are chosen randomly before samplings. By doing so, 

SysMon guarantees that there is less deviation when collecting re-use time infor-
mation during samplings. Page-level re-use time information is an important factor 
that reflects the application access behaviors, which represents the temporal locality 
of the pages. By analyzing the re-use time, we can quantify how quickly the particular 
pages will be accessed again. Taking re-use time into account can accurately reflect 
the page access trend and the applications’ overall memory access trend during the 
period of time.  

3.5 Module 4: Bank hotness statistics 

The main memory system is composed of several DRAM banks that are shared by 
multiple running processes. When several requests from different process falling on 
the same DRAM bank, the access conflict occurs, and these requests have to be han-
dled in a sequential order. This causes row buffer thrashing and a longer access delay, 
and declines the overall performance of the system. Therefore, it is the foundation of 
further optimizing memory scheduling algorithms to clearly understand the bank hot-
ness/balance information among several DRAM banks.  

As illustrated in Algorithm_3, SysMon calculates the number of hot pages in each 
bank. PAGE_TO_BANK is a macro definition that can extract the bank bits and obtain 
the bank id (Line 3). Note that Algorithm_3 is implemented with channel interleaving 
under the configuration of Figure 2 (a). When the entire bandwidth demand is larger 
than 2GB/s, channel partition is more effective and can avoid significant performance 
degradation [15]. In the case above, since there are 64 banks in the memory system 
(32 banks/per channel), PAGE_TO_BANK should simultaneously extract channel bit 
and bank bits to calculate the bank id. 
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4 OPTIMIZATION 

For the applications that need large memory footprint, to reduce the scanning over-
head during samplings, SysMon randomly scans a portion of pages instead of travers-
ing all the Virtual Memory Areas (VMAs). As illustrated in Figure 5, SysMon scans 
5% pages in our experiments. Before sampling, SysMon generates a random number 
as the sampling’s starting point within a VMA by using function get_random_bytes(). 
The sampling interval of pages can be calculated by scanning ratio (i.e., 1 / 0.05 = 20 
in our experiments). The scanning ratio can be adjusted as required. 

 
Fig. 5. SysMon samples a portion of pages to analyze the applications’ behaviors. Note that the 
sampling fraction here is only for illustration purpose. In our experiments, we sample 5% of 
pages during each sampling. 

 
Fig. 6. The number of hot pages by using random sampling method. 

To reduce the error efficiently, SysMon uses different random numbers before each 
sampling. After 200 samplings, all the pages can be covered. We adopt equal interval 
sampling (i.e., sample page 0, 20, 40, 60…) instead of completely random design 
(i.e., generate random numbers constantly as the page number during samplings). It is 
because if we use the second method, we have to record all the random numbers, so 
the space overhead will increase linearly as the memory footprint increases; it is con-
trary to the intention of “randomization to reduce the sampling overhead”, and not 
worth the candle.  

Our experiments show that sample 5% pages can accurately reflect the applica-
tions’ memory access trend, the ratio of hot pages, etc. Figure 6 gives several exam-
ples of benchmarks. Experiments show that randomization can reduce the scanning 
overhead by 33.12% at least (tonto), 47.89% at most (Memcached), and 44.42% on 
average.  
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5 EVALUATION 

5.1 How to run SysMon 

We study SysMon on the configuration of Figure 2 (a). To run SysMon, we firstly 
need to write a Makefile file. Each source file (i.e., *.c) corresponds to a line “obj-m 
+= *.o” in the Makefile. After using make command to compile the source files, we 
then use insmod *.ko command to insert the module into the kernel. Finally, use 
dmesg to output the results. 

5.2 Benchmarks 

We evaluate SysMon with diverse workloads, including SPECCPU2006, widely used 
Memcached with data from Twitter and Redis. SPECCPU2006 benchmark is an in-
dustry-standardized, CPU-intensive benchmark suite. The widely used Memcached is 
a distributed memory object caching system. It is an in-memory key-value store for 
small chunks of arbitrary data from results of database calls, API calls, or page ren-
dering. Redis is a popular NoSQL database and is single-threaded. Redis has no file 
I/O after loading the dataset into memory.  

5.3 Experimental results 

Memory footprint and write/read operations.  Figure 7 shows the benchmarks’ 
average normalized portion of different types of pages (i.e., write page, read page and 
cold page). It can be seen from Figure 7 that more than 80% pages of omnetpp, sjeng, 
lbm and GemsFDTD are hot pages; more than 90% pages of lbm are write pages. For 
bzip2 and namd, less than 10% pages are hot pages. As for Memcached and Redis, 
though their memory footprints are large, the portion of hot pages/active pages is not 
that large. 

 
Fig. 7. Normalized portion of the three types of pages of different benchmarks. 
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Fig. 8. Normalized portion of different re-use time sections. 

Re-use time. We tested all the benchmarks and observed that there are two categories 
can be classified by the re-use time characteristics. One is that most re-use times are 
relatively small; the other is the re-use times are evenly distributed in different sec-
tions.  

Figure 8 represents the portion of different re-use time sections. Figure 8 (a) shows 
that for mcf, 80.6% re-use time (i.e., re-use distance) is less than 5, and only 7.4% re-
use time is larger than 50 within 200 samplings; it means that the memory access for 
mcf is very intensive. Libquantum (Figure 8 (c)) is similar to mcf, most re-use times 
are between 0 and 20, only 6.4% re-use time is larger than 50. As for Memcached 
(Figure 8 (b)), the re-use time distribution is more balanced, which indicated that 
memory access is not that intensive compared with mcf and libquantum.  
Bank hotness. Figure 9 illustrates the normalized hot page number (i.e., bank hot-
ness) within each DRAM bank. By exploring the bank hotness of all benchmarks, we 
found that the hot page distribution is not balanced in many cases. Taking Mem-
cached as an example, the hottest bank (bank 31) has 531 more hot pages than the 
coldest bank (bank 15). Besides, we randomly choose two workloads and test their 
bank hotness. To eliminate the bank unbalance, L. Liu et al. [17] proposes a page-
coloring based bank-level partition mechanism, which allocates specific DRAM 
banks to specific threads.  

 
Fig. 9. Normalized bank hotness of single benchmark and multi-benchmarks. 
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Fig. 10. The number of hot pages under the configuration of different sampling intervals. 

5.4 Sampling interval 

In our experiments, the sampling interval between two sampling periods is set to 3 
seconds. In terms of the time interval, we are challenged by a question: how much the 
interval should we use to obtain the applications’ memory access information with 
low overhead and good accuracy? To study the relation between sampling accuracy 
and sampling interval, we test the hot page numbers of all benchmarks by using dif-
ferent intervals (i.e., 1s, 3s, 5s, and 7s). Due to the space limitation, we show two 
benchmarks in Figure 10. It can be seen that the variation trends of hot page numbers 
are similar no matter how much the time interval is. Note that the smaller interval, the 
higher overhead, so we choose 3 seconds in our platform to balance the accuracy and 
overhead. By doing so, we can guarantee the accuracy while not costing so much 
overhead.  

6 RELATED WORK 

Many previous researches [10, 24] performed profiling in the real time by the support 
of hardware performance counters. In this paper, without hardware supports, SysMon 
obtains memory access behaviors online via OS approach, and is able to collect the 
page-level re-use time, bank balance/hotness, and the write/read characteristics [14, 
16]. The captured information is critical for the memory management on hybrid 
DRAM-NVM system [13, 19, 22]. 

7 CONCLUTION 

This paper re-designs SysMon as a Linux kernel module to meet the challenges on 
monitoring large memory footprint applications. To balance the sampling overhead 
and accuracy, we adopt a random sampling method and explore the appropriate sam-
pling interval. Experiments show that 44.42% sampling overhead on average can be 
reduced by using random sampling method. We capture a large number of bench-
marks’ memory behaviors including page access frequency, write/read and hot/cold 
features, re-use time and bank balance/hotness by using SysMon. 
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